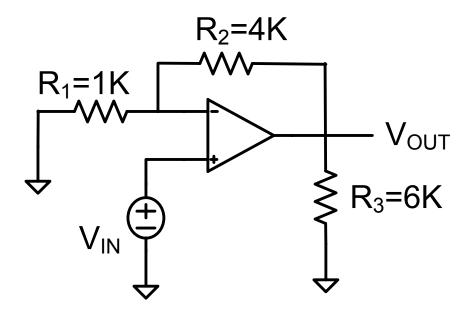
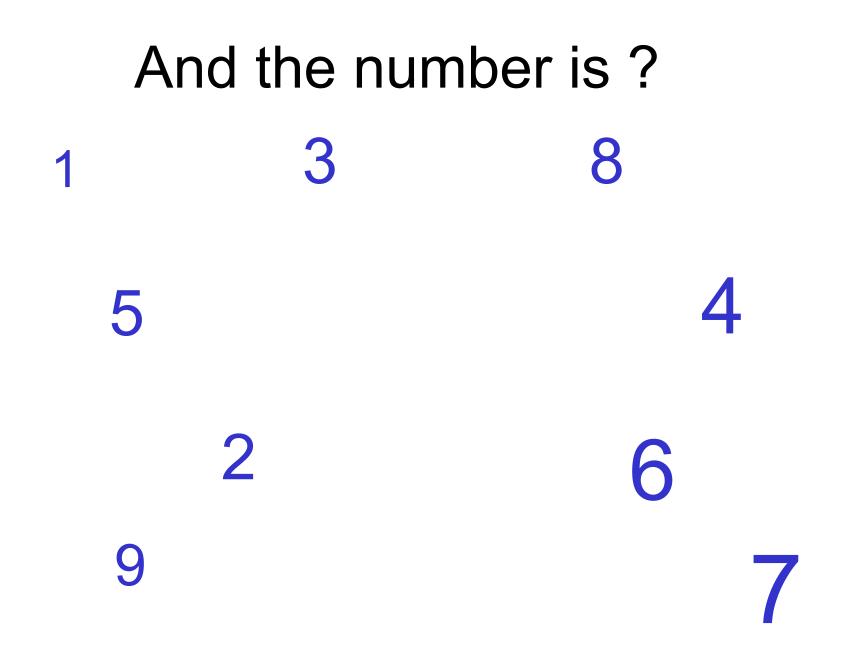
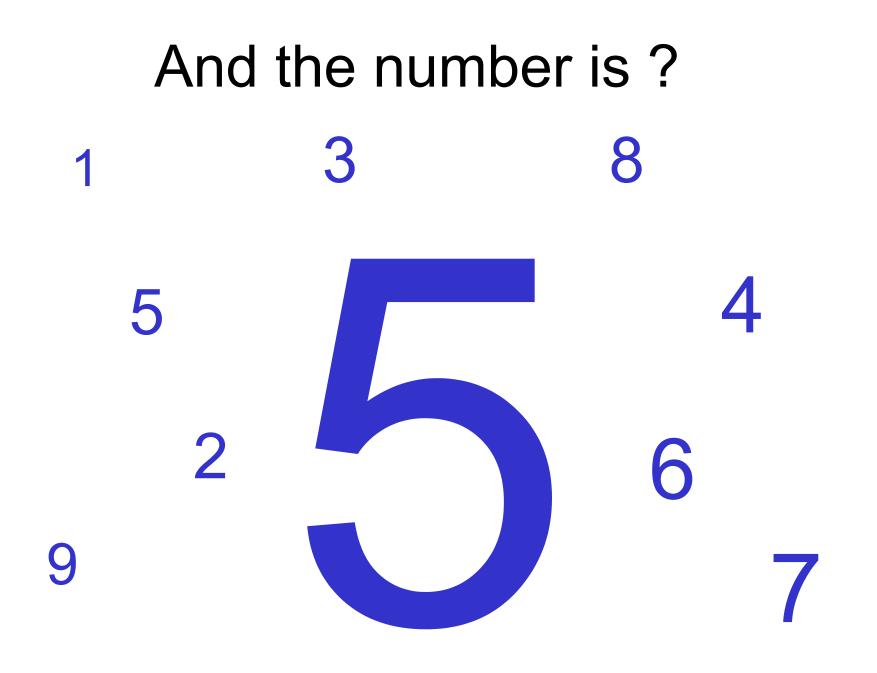
EE 230 Lecture 16

Nonideal Op Amp Characteristics


Quiz 11

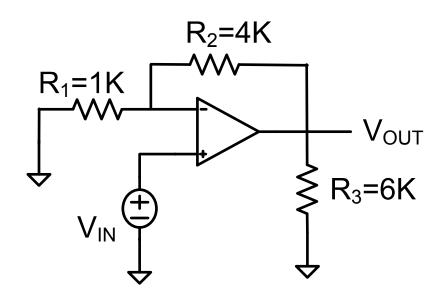

The dc gain of this circuit was measured to be 5 and the 3dB bandwidth was measured to be 600KHz. Determine as many of the following as possible from this information if it is known that the op amp can be modeled as a single-pole lowpass amplifier.


Ao (dc gain of the Op Amp)

P (pole of the Op Amp)

GB (gain-bandwidth product of Op Amp)

Quiz 11 Solution:


The dc gain of this circuit was measured to be 5 and the 3dB bandwidth was measured to be 600KHz. Determine as many of the following as possible from this information if it is known that the op amp can be modeled as a single-pole lowpass amplifier.

A_o (dc gain of the Op Amp)

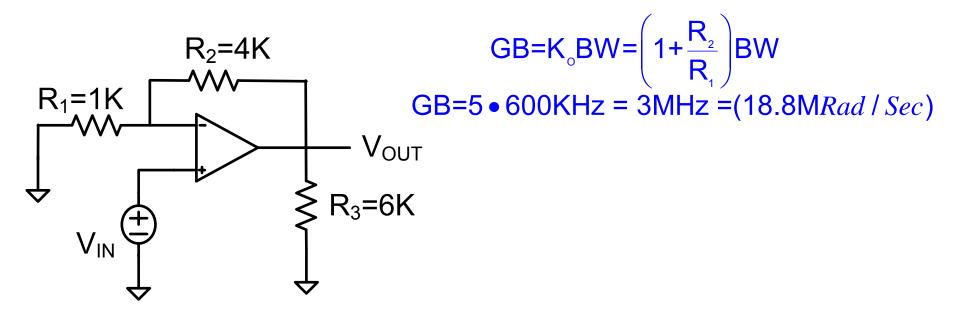
p (pole of the Op Amp)

Insufficient information to determine A_o or p

GB (gain-bandwidth product of Op Amp)

$$GB=K_{o}BW=\left(1+\frac{R_{2}}{R_{1}}\right)BW$$

Quiz 11 Solution:

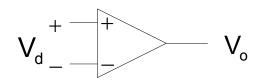

The dc gain of this circuit was measured to be 5 and the 3dB bandwidth was measured to be 600KHz. Determine as many of the following as possible from this information if it is known that the op amp can be modeled as a single-pole lowpass amplifier.

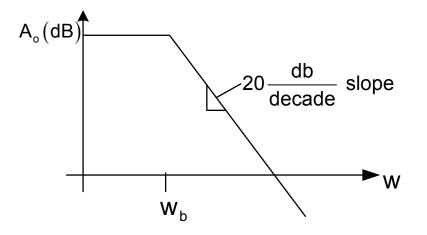
A_o (dc gain of the Op Amp)

p (pole of the Op Amp)

Insufficient information to determine A_o or p

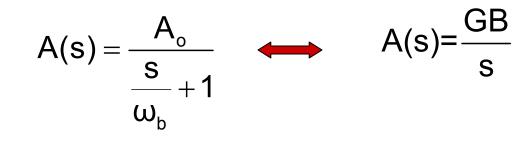
GB (gain-bandwidth product of Op Amp)

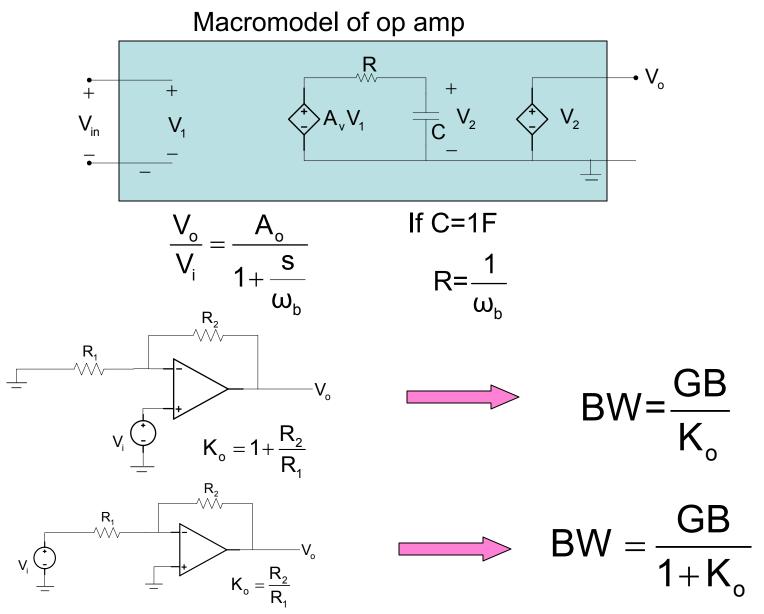

Review from Last Time: Nonideal op amp characteristics


- Finite Gain
- Finite BW

[,] GB

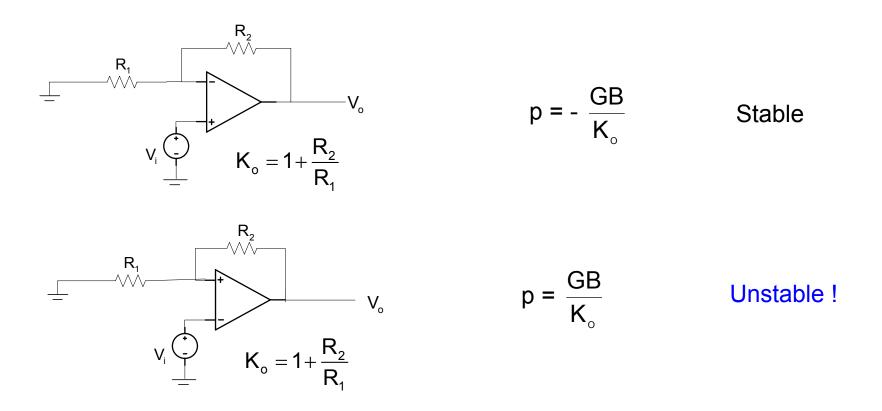
- Compensation
 - Output Saturation
 - Slew Rate
 - R_{IN} & R_{OUT}
 - Offset Voltage
 - Bias Currents
 - CMRR
 - PSRR
 - Offset Current
 - Full Power Bandwidth


Review from Last Time: Finite GB and BW



$$A_o \omega_b = GB$$

GB termed Gain-Bandwidth Product



Review from Last Time:

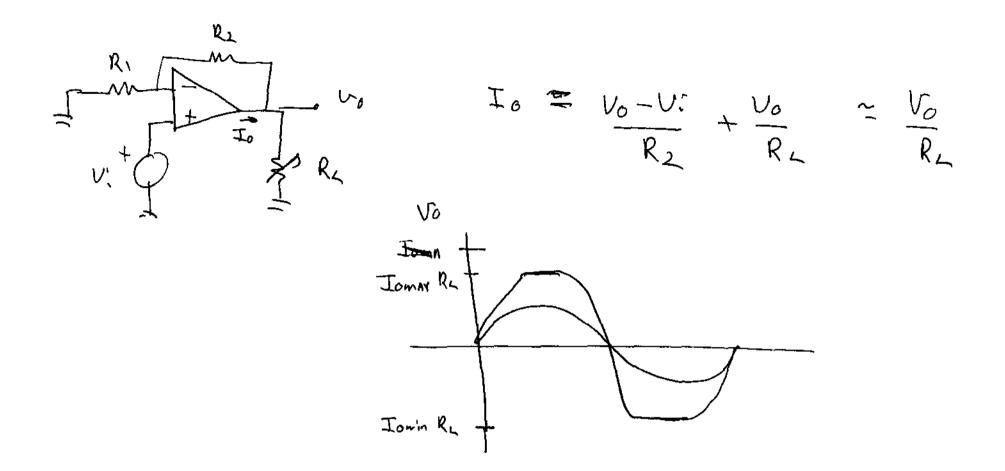
Basic inverting or noninverting amplifier useful for measuring GB

Review from Last Time:

Essentially all op amp circuits designed to operate linearly will be unstable if the input terminals of the operational amplifier are interchanged !!

The ability to make this determination is <u>one</u> of the major reasons for studying stability in this course

Nonideal op amp characteristics


- Finite Gain
- Finite BW

GB

- Compensation
- Output Saturation
 - Slew Rate
 - R_{IN} & R_{OUT}
 - Offset Voltage
 - Bias Currents
 - CMRR
 - PSRR
 - Offset Current
 - Full Power Bandwidth

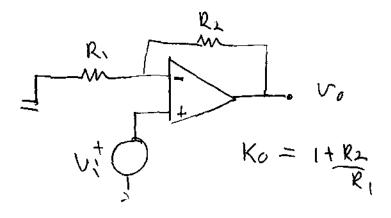
Often Vomax =
$$V_{DD} - 1.2V$$

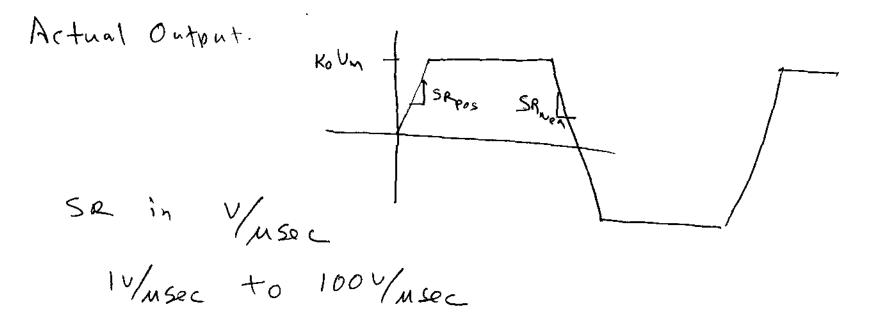
Vomin = $V_{SS} + 1.2U$
 $V_{DD} + 1.2U$
 $V_{DD} + 1.2U$
 $V_{DD} + 1.2U$

Nonlinean distortion is introduced

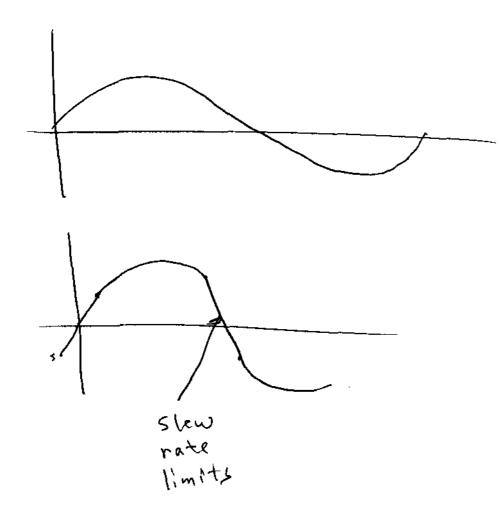
Output Current Saturation provides similar limits to what was seen with output voltage saturation

Usually tell difference between voltage & current Saturction by looking at saturction voltage


Nonideal op amp characteristics


• Finite Gain

• Finite BW


- GB
- Compensation
- Output Saturation
- Slew Rate
 - R_{IN} & R_{OUT}
 - Offset Voltage
 - Bias Currents
 - CMRR
 - PSRR
 - Offset Current
 - Full Power Bandwidth

Slew Rate Maximum Rate of Change at Output of Op Amp.

SR with sinusoidal signals

$$V_{0} = V_{m} \sin(\omega t + \theta)$$

$$\frac{\partial V_{0}}{\partial t} = V_{m} \cos(\omega t + \theta) W < SR$$

$$T_{0} = v_{0} \partial s (ew distortion)$$

$$V_{m} W < SR$$

$$W_{m} W < SR$$

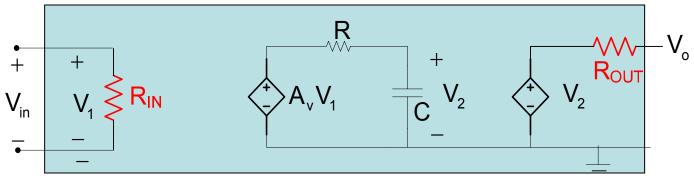
$$I_{0} = V_{m} W \text{ significantly larger than SR}$$

$$Output will become a taionole work$$

Nonideal op amp characteristics

- Finite Gain
- Finite BW

GB

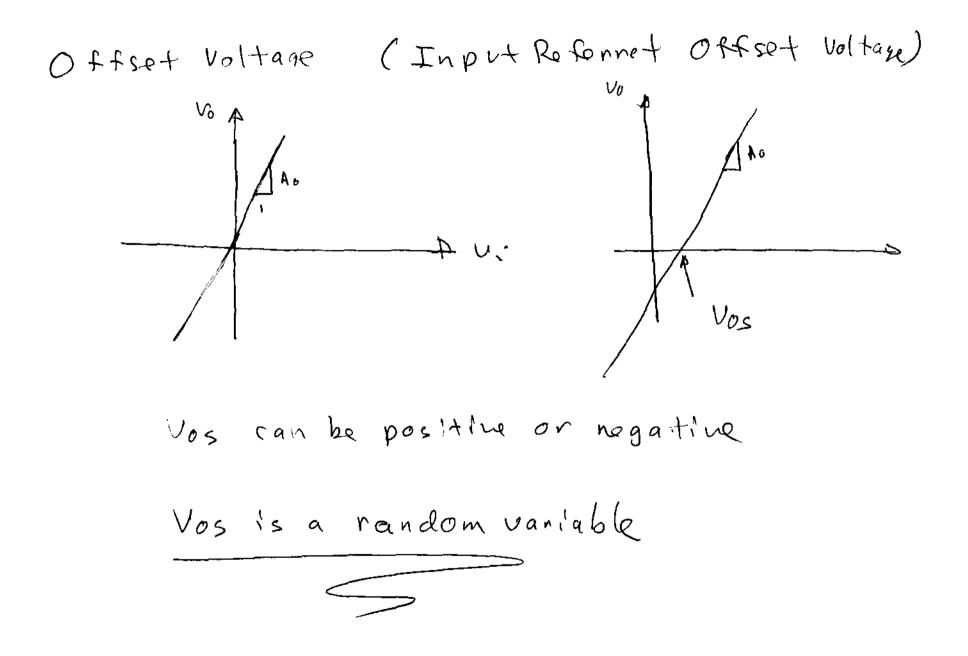

- Compensation
- Output Saturation
- Slew Rate
- RIN & ROUT
 - Offset Voltage
 - Bias Currents
 - CMRR
 - PSRR
 - Offset Current
 - Full Power Bandwidth

R_{IN} and R_{OUT}

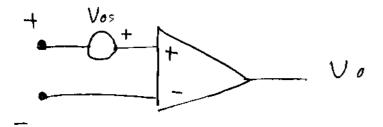
 R_{IN} is the input impedance to an op amp (a few M Ω for bipolar inputs, many G Ω for FET input op amps)

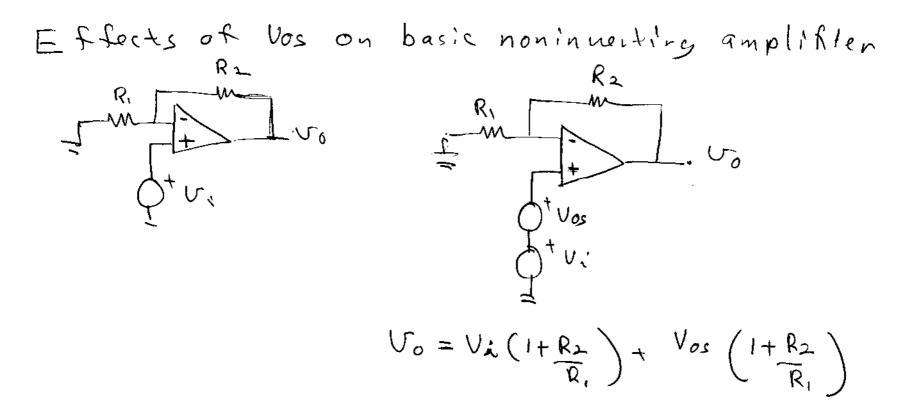
 R_{OUT} is the output impedance of an op amp (in the 75 Ω range)

Macromodel including R_{IN} and R_{OUT}

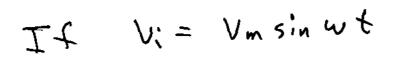

Several thousand commercially available op amps, specs can vary considerably!

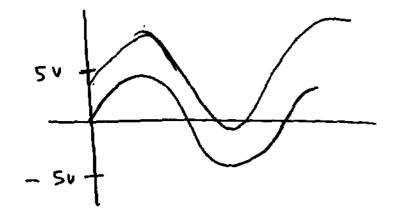
Nonideal op amp characteristics


- Finite Gain
- GB
- Compensation
- Output Saturation
- Slew Rate


• Finite BW

- R_{IN} & R_{OUT}
- Offset Voltage
 - Bias Currents
 - CMRR
 - PSRR
 - Offset Current
 - Full Power Bandwidth


Vos ran he modeled with a de voltage sourg in series with input terminal



If
$$V_1 \ge V_{OS}$$
, Vos does not advercely
affect performance
 $V_2 \sim V_{OS}$, Vos presents a major problem
 $V_1 < V_{OS}$, Vos presents a major problem
 $V_1 < V_{OS}$, Vos is very different
to manage
 $V_0 = V_1 \left(1 + \frac{R_2}{R_1}\right) + V_{OS} \left(1 + \frac{R_2}{R_1}\right)$

If Vos = 3MUVi = 3mU $I + \frac{R_1}{R_1} = 1000$ Voortini = (3mv)(1000) + (3mv)(1000 = 6v) Methods of managing Vos 1) Cap. Coupling 2) Animming Vos 3) use the premium of

$$Vos = 3mV$$
$$A_V = 1000$$

Measurement of Vos (must be on every device
100k

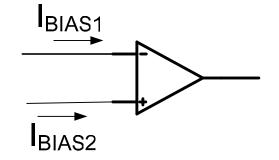
$$Vo = Vos(1+100)$$

 $Vos = \frac{Vo}{101}$

End of lecture

Nonideal op amp characteristics

• Finite Gain


GB

- Compensation
- Output Saturation
- Slew Rate

• Finite BW

- R_{IN} & R_{OUT}
- Offset Voltage
- Bias Currents
 - CMRR
 - PSRR
 - Offset Current
 - Full Power Bandwidth

Bias and Offset Currents

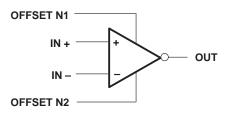
 ${\rm I}_{\rm BIAS}$ is small for bipolar input op amps, extremely small for FET input op amps

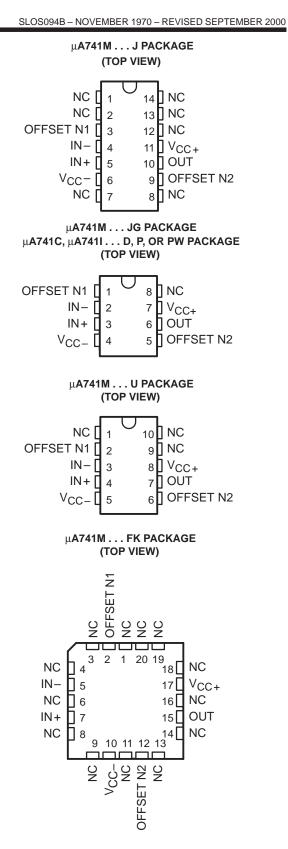
Can be neglected in most designs regardless of whether FET or Bipolar input

Typical question on many interviews

 $I_{OFSET} = I_{BIAS1} - I_{BIAS2}$ I_{OFFSET} is a random variable with zero mean for most designs I_{BIAS} around 50 nA for 741, I_{OFFSET} around 3nA for 741

- Short-Circuit Protection
- Offset-Voltage Null Capability
- Large Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-Up
- Designed to Be Interchangeable With Fairchild μA741


description


The μ A741 is a general-purpose operational amplifier featuring offset-voltage null capability.

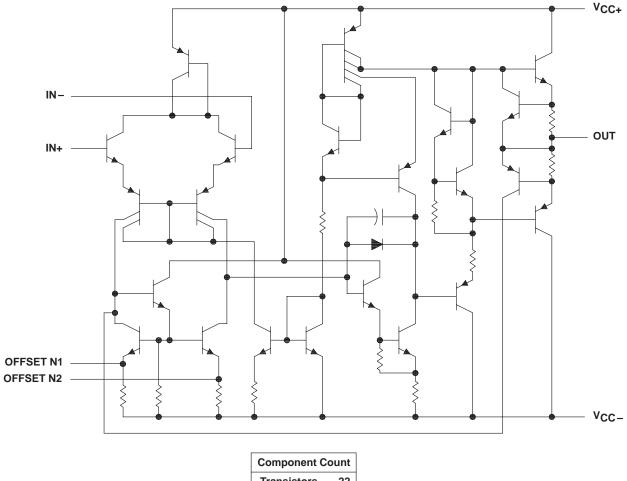
The high common-mode input voltage range and the absence of latch-up make the amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components. A low value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2.

The μ A741C is characterized for operation from 0°C to 70°C. The μ A741I is characterized for operation from -40°C to 85°C.The μ A741M is characterized for operation over the full military temperature range of -55°C to 125°C.

symbol

NC - No internal connection

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

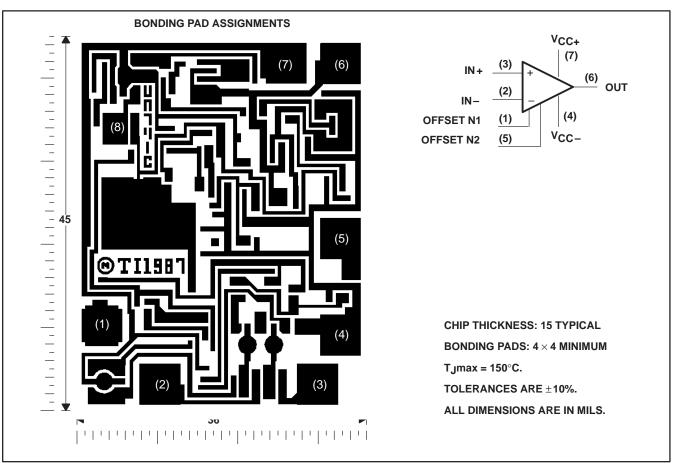

Copyright © 2000, Texas Instruments Incorporated

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

AVAILABLE OPTIONS											
	PACKAGED DEVICES										
TA	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (J)	CERAMIC DIP (JG)	PLASTIC DIP (P)	TSSOP (PW)	FLAT PACK (U)	CHIP FORM (Y)			
0°C to 70°C	μA741CD				μA741CP	μA741CPW		μA741Y			
-40°C to 85°C	μΑ741ID				μA741IP						
-55°C to 125°C		μA741MFK	μA741MJ	μA741MJG			μA741MU				

The D package is available taped and reeled. Add the suffix R (e.g., μ A741CDR).

schematic


-	
Transistors	22
Resistors	11
Diode	1
Capacitor	1

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

μ A741Y chip information

This chip, when properly assembled, displays characteristics similar to the μ A741C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

		μ Α741C	μ Α741Ι	μ Α741Μ	UNIT	
Supply voltage, V _{CC+} (see Note 1)		18	22	22	V	
Supply voltage, V _{CC-} (see Note 1)		-18	-22	-22	V	
Differential input voltage, VID (see Note 2)		±15	±30	±30	V	
Input voltage, V _I any input (see Notes 1 and 3)	±15	±15	±15	V		
Voltage between offset null (either OFFSET N1 or OFFSET N2) and V _{CC} _			±0.5	±0.5	V	
Duration of output short circuit (see Note 4)			unlimited	unlimited		
Continuous total power dissipation		See Dissipation Rating Table				
Operating free-air temperature range, TA		0 to 70	-40 to 85	-55 to 125	°C	
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C	
Case temperature for 60 seconds	FK package			260	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J, JG, or U package			300	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D, P, or PW package	260	260		°C	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}.

2. Differential voltages are at IN+ with respect to IN-.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.

 The output may be shorted to ground or either power supply. For the μA741M only, the unlimited duration of the short circuit applies at (or below) 125°C case temperature or 75°C free-air temperature.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	500 mW	5.8 mW/°C	64°C	464 mW	377 mW	N/A
FK	500 mW	11.0 mW/°C	105°C	500 mW	500 mW	275 mW
J	500 mW	11.0 mW/°C	105°C	500 mW	500 mW	275 mW
JG	500 mW	8.4 mW/°C	90°C	500 mW	500 mW	210 mW
Р	500 mW	N/A	N/A	500 mW	500 mW	N/A
PW	525 mW	4.2 mW/°C	25°C	336 mW	N/A	N/A
U	500 mW	5.4 mW/°C	57°C	432 mW	351 mW	135 mW

$\mu \text{A741}, \mu \text{A741Y}$ GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

	PADAMETED	TEST	- +	ļ	ւ A741C		μ Α74	1Ι, μ Α7	41M		
	PARAMETER	CONDITIONS	TA [†]	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
Vie	Input offset voltage	$V_{O} = 0$	25°C		1	6		1	5	mV	
VIO	input onset voltage	vO = 0	Full range			7.5			6	IIIV	
$\Delta V_{IO}(adj)$	Offset voltage adjust range	$V_{O} = 0$	25°C		±15			±15		mV	
IIO	Input offset current	$V_{O} = 0$	25°C		20	200		20	200	nA	
10	input onset current	v0 = 0	Full range			300			500	117	
IIB	Input bias current	$V_{O} = 0$	25°C		80	500		80	500	nA	
чв		v0=0	Full range			800			1500	10.0	
VICR	Common-mode input		25°C	±12	±13		±12	±13		V	
VICR	voltage range		Full range	±12			±12			·	
		$R_L = 10 \text{ k}\Omega$	25°C	±12	±14		±12	±14			
VOM	Maximum peak output	$R_L \ge 10 \ k\Omega$	Full range	±12			±12			V	
°OM ,	voltage swing	$R_L = 2 k\Omega$	25°C	±10	±13		±10	±13		v	
		$R_L \ge 2 \ k\Omega$	Full range	±10			±10				
A. (5)	Large-signal differential	$R_L \ge 2 \ k\Omega$	25°C	20	200		50	200		V/mV	
AVD	voltage amplification	V _O = ±10 V	Full range	15			25			V/IIIV	
r _i	Input resistance		25°C	0.3	2		0.3	2		MΩ	
r _o	Output resistance	$V_{O} = 0$, See Note 5	25°C		75			75		Ω	
Ci	Input capacitance		25°C		1.4			1.4		pF	
CMRR	Common-mode rejection	VIC = VICRmin	25°C	70	90		70	90		dB	
CIVILLE	ratio	VIC = VICRIIIII	Full range	70			70			uВ	
kovo	Supply voltage sensitivity	$V_{CC} = \pm 9 V \text{ to } \pm 15 V$	25°C		30	150		30	150	μV/V	
ksvs	$(\Delta \Lambda^{IO}/\Delta \Lambda^{CC})$	VCC = ±9 V t0 ± 13 V	Full range			150			150	μν/ν	
los	Short-circuit output current		25°C		±25	±40		±25	±40	mA	
	Supply current	$V_{O} = 0$, No load	25°C		1.7	2.8		1.7	2.8	mA	
Icc			Full range			3.3			3.3		
PD	Total power dissipation	$V_{O} = 0$, No load	25°C		50	85		50	85	mW	
טי			Full range			100			100		

electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = ±15 V (unless otherwise noted)

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for the μA741C is 0°C to 70°C, the μA741I is -40°C to 85°C, and the μA741M is -55°C to 125°C.

NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

operating characteristics, V_{CC\pm} = ± 15 V, T_A = 25°C

	PARAMETER	TEST	TEST CONDITIONS			μ Α741C			1M	UNIT
	FARAMETER	TEST CO	UNDITIONS	MIN	TYP	MAX	MIN TYP MAX		UNIT	
tr	Rise time	V ₁ = 20 mV,	R _L = 2 kΩ,		0.3			0.3		μs
	Overshoot factor	C _L = 100 pF,			5%			5%		
SR	Slew rate at unity gain	V _I = 10 V, C _L = 100 pF,	$R_L = 2 k\Omega$, See Figure 1		0.5			0.5		V/µs

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = ± 15 V, T_A = 25°C (unless otherwise noted)

		TEST CONDITIONS	ł	ι Α741Υ		LINUT
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	$V_{O} = 0$		1	6	mV
ΔV IO(adj)	Offset voltage adjust range	$V_{O} = 0$		±15		mV
1 ₁₀	Input offset current	$V_{O} = 0$		20	200	nA
I _{IB}	Input bias current	$V_{O} = 0$		80	500	nA
VICR	Common-mode input voltage range		±12	±13		V
VOM	Maximum pack output valtage awing	$R_L = 10 \text{ k}\Omega$	±12	±14		V
	Maximum peak output voltage swing	$R_L = 2 k\Omega$	±10	±13		v
A _{VD}	Large-signal differential voltage amplification	$R_L \ge 2 k\Omega$	20	200		V/mV
r _i	Input resistance		0.3	2		MΩ
r _o	Output resistance	$V_{O} = 0$, See Note 5		75		Ω
Ci	Input capacitance			1.4		pF
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$	70	90		dB
ksvs	Supply voltage sensitivity ($\Delta V_{IO}/\Delta V_{CC}$)	$V_{CC} = \pm 9 V \text{ to } \pm 15 V$		30	150	μV/V
los	Short-circuit output current			±25	±40	mA
ICC	Supply current	$V_{O} = 0$, No load		1.7	2.8	mA
PD	Total power dissipation	$V_{O} = 0$, No load		50	85	mW

[†] All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.

NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

operating characteristics, V_{CC} \pm = ± 15 V, T_A = 25 $^{\circ}C$

	PARAMETER	TEST CONDITIONS	Ļ	UNIT		
	PARAIVETER	TEST CONDITIONS	MIN TYP MAX			UNIT
tr	Rise time	$V_{I} = 20 \text{ mV}, R_{L} = 2 \text{ k}\Omega,$		0.3		μs
	Overshoot factor	$C_L = 100 \text{ pF}$, See Figure 1		5%		
SR	Slew rate at unity gain	$ \begin{array}{ll} V_I \ = \ 10 \ V, & R_L = 2 \ k\Omega, \\ C_L = \ 100 \ pF, & See \ Figure \ 1 \end{array} $		0.5		V/µs

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

PARAMETER MEASUREMENT INFORMATION

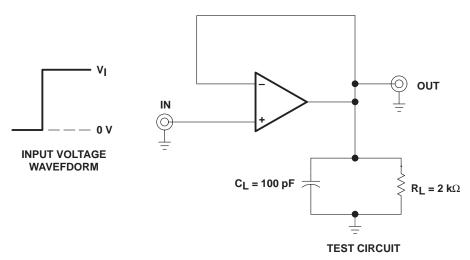


Figure 1. Rise Time, Overshoot, and Slew Rate

APPLICATION INFORMATION

Figure 2 shows a diagram for an input offset voltage null circuit.

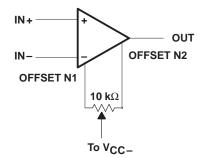
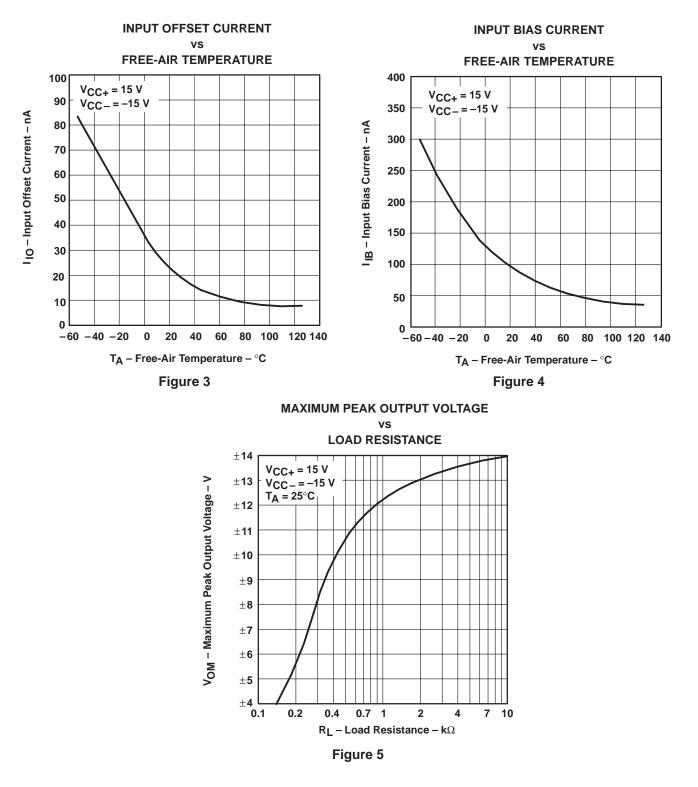
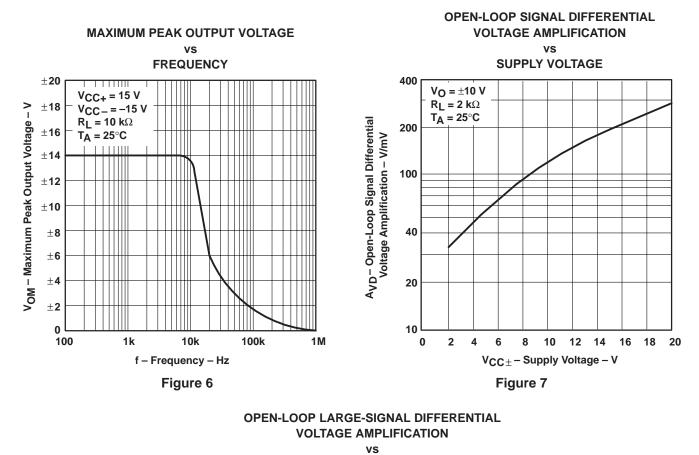
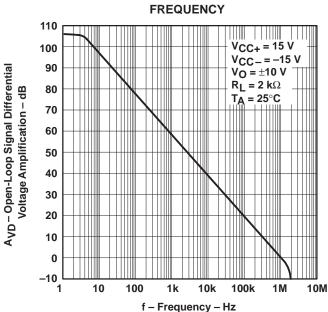



Figure 2. Input Offset Voltage Null Circuit

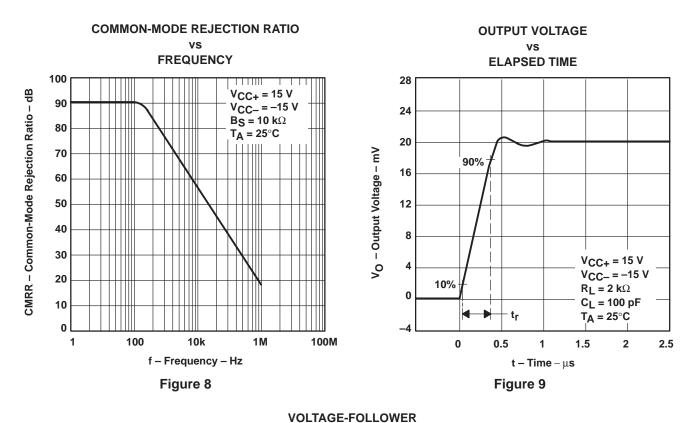
SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000



TYPICAL CHARACTERISTICS[†]


[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000



TYPICAL CHARACTERISTICS

SLOS094B - NOVEMBER 1970 - REVISED SEPTEMBER 2000

TYPICAL CHARACTERISTICS

LARGE-SIGNAL PULSE RESPONSE 8 V_{CC+} = 15 V $V_{CC-} = -15 V$ 6 $R_L = 2 k\Omega$ $C_{L} = 100 \, pF$ nput and Output Voltage – V 4 $T_A = 25^{\circ}C$ ٧o 2 0 ٧ı I -2 -4 -6 -8 50 0 10 20 30 40 60 70 80 90 t – Time – μ s Figure 10

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

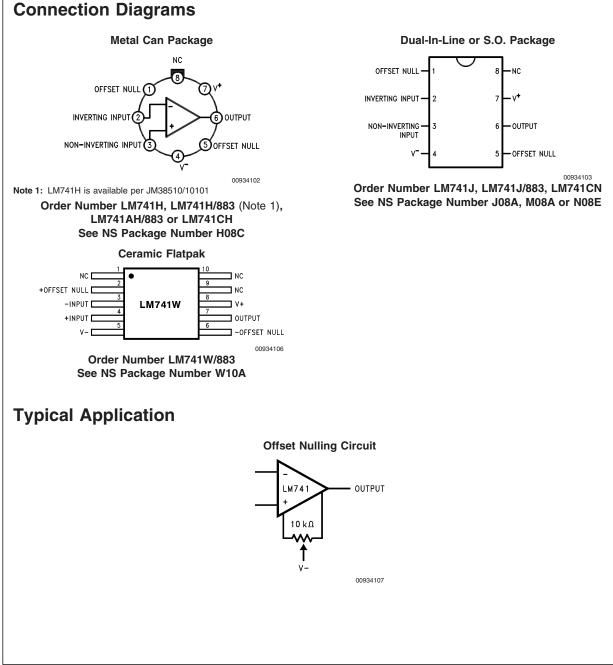
Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated

LM741 Operational Amplifier General Description


The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and

output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C is identical to the LM741/LM741A except that the LM741C has their performance guaranteed over a 0°C to $+70^{\circ}$ C temperature range, instead of -55° C to $+125^{\circ}$ C.

August 2000

LM741

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 7)

> LM741A LM741 LM741C Supply Voltage ±22V ±22V ±18V Power Dissipation (Note 3) 500 mW 500 mW 500 mW Differential Input Voltage ±30V ±30V ±30V Input Voltage (Note 4) ±15V $\pm 15V$ ±15V Continuous **Output Short Circuit Duration** Continuous Continuous **Operating Temperature Range** -55°C to +125°C -55°C to +125°C 0°C to +70°C -65°C to +150°C -65°C to +150°C -65°C to +150°C Storage Temperature Range 150°C 150°C 100°C Junction Temperature Soldering Information 260°C 260°C 260°C N-Package (10 seconds) J- or H-Package (10 seconds) 300°C 300°C 300°C M-Package Vapor Phase (60 seconds) 215°C 215°C 215°C 215°C 215°C Infrared (15 seconds) 215°C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

> > 400V

400V

400V

ESD Tolerance (Note 8)

Electrical Characteristics (Note 5)

Parameter	Conditions		LM741	Α		LM741		L	_M741(C	Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	$T_A = 25^{\circ}C$										
	$R_{S} \le 10 \text{ k}\Omega$					1.0	5.0		2.0	6.0	mV
	$R_{S} \le 50\Omega$		0.8	3.0							mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_{S} \le 50\Omega$			4.0							mV
	$R_{S} \le 10 \text{ k}\Omega$						6.0			7.5	mV
Average Input Offset				15							µV/°C
Voltage Drift											
Input Offset Voltage	$T_{A} = 25^{\circ}C, V_{S} = \pm 20V$	±10				±15			±15		mV
Adjustment Range											
Input Offset Current	T _A = 25°C		3.0	30		20	200		20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			70		85	500			300	nA
Average Input Offset				0.5							nA/°C
Current Drift											
Input Bias Current	T _A = 25°C		30	80		80	500		80	500	nA
	$T_{AMIN} \leq T_A \leq T_{AMAX}$			0.210			1.5			0.8	μA
Input Resistance	$T_{A} = 25^{\circ}C, V_{S} = \pm 20V$	1.0	6.0		0.3	2.0		0.3	2.0		MΩ
	$T_{AMIN} \le T_A \le T_{AMAX},$	0.5									MΩ
	$V_{\rm S} = \pm 20 V$										
Input Voltage Range	T _A = 25°C							±12	±13		V
	$T_{AMIN} \le T_A \le T_{AMAX}$				±12	±13					V

Parameter	Conditions	1	LM741	A		LM741		L	_M741(0	Units
		Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	
Large Signal Voltage Gain	$T_A = 25^{\circ}C, R_L \ge 2 \ k\Omega$										
	$V_{S} = \pm 20V, V_{O} = \pm 15V$	50									V/mV
	$V_{S} = \pm 15V, V_{O} = \pm 10V$				50	200		20	200		V/mV
	$T_{AMIN} \leq T_A \leq T_{AMAX},$										
	$R_L \ge 2 k\Omega$,										
	$V_{S} = \pm 20V, V_{O} = \pm 15V$	32									V/mV
	$V_{S} = \pm 15V, V_{O} = \pm 10V$				25			15			V/mV
	$V_S = \pm 5V, V_O = \pm 2V$	10									V/mV
Output Voltage Swing	$V_{\rm S} = \pm 20 V$										
	$R_L \ge 10 \ k\Omega$	±16									V
	$R_L \ge 2 k\Omega$	±15									V
	$V_{\rm S} = \pm 15 V$										
	$R_L \ge 10 \ k\Omega$				±12	±14		±12	±14		V
	$R_L \ge 2 k\Omega$				±10	±13		±10	±13		V
Output Short Circuit	$T_A = 25^{\circ}C$	10	25	35		25			25		mA
Current	$T_{AMIN} \leq T_{A} \leq T_{AMAX}$	10		40							mA
Common-Mode	$T_{AMIN} \le T_A \le T_{AMAX}$										
Rejection Ratio	${ m R}_{ m S} \le$ 10 k $\Omega,~{ m V}_{ m CM}$ = ±12V				70	90		70	90		dB
	$R_{S} \le 50\Omega$, $V_{CM} = \pm 12V$	80	95								dB
Supply Voltage Rejection	$T_{AMIN} \leq T_A \leq T_{AMAX},$										
Ratio	$V_{\rm S}$ = ±20V to $V_{\rm S}$ = ±5V										
	${\sf R}_{\sf S} \le 50 \Omega$	86	96								dB
	$R_{S} \le 10 \text{ k}\Omega$				77	96		77	96		dB
Transient Response	$T_A = 25^{\circ}C$, Unity Gain										
Rise Time			0.25	0.8		0.3			0.3		μs
Overshoot			6.0	20		5			5		%
Bandwidth (Note 6)	$T_A = 25^{\circ}C$	0.437	1.5								MHz
Slew Rate	$T_A = 25^{\circ}C$, Unity Gain	0.3	0.7			0.5			0.5		V/µs
Supply Current	$T_A = 25^{\circ}C$					1.7	2.8		1.7	2.8	mA
Power Consumption	$T_A = 25^{\circ}C$										
	$V_{S} = \pm 20V$		80	150							mW
	$V_{S} = \pm 15V$					50	85		50	85	mW
LM741A	$V_{\rm S} = \pm 20 V$										
	$T_A = T_{AMIN}$			165							mW
	$T_A = T_{AMAX}$			135							mW
LM741	$V_{\rm S} = \pm 15 V$										
	$T_A = T_{AMIN}$					60	100				mW
	$T_A = T_{AMAX}$					45	75				mW

Note 2: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

LM741

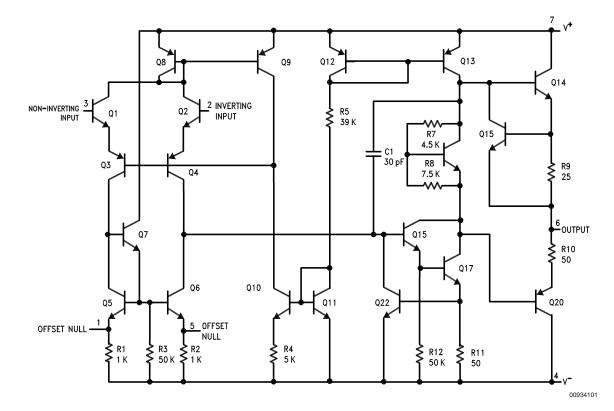
LM741

Electrical Characteristics (Note 5) (Continued)

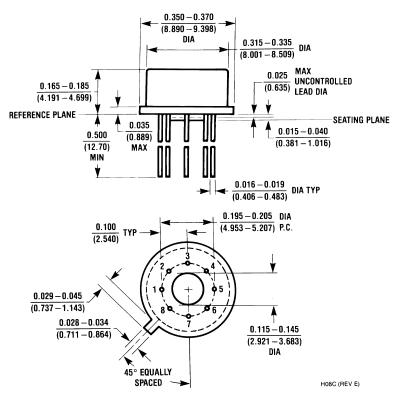
Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_j max. (listed under "Absolute Maximum Ratings"). $T_j = T_A + (\theta_{jA} P_D)$.

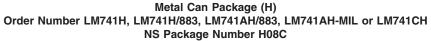
Thermal Resistance	Cerdip (J)	DIP (N)	HO8 (H)	SO-8 (M)
θ_{jA} (Junction to Ambient)	100°C/W	100°C/W	170°C/W	195°C/W
θ_{jC} (Junction to Case)	N/A	N/A	25°C/W	N/A

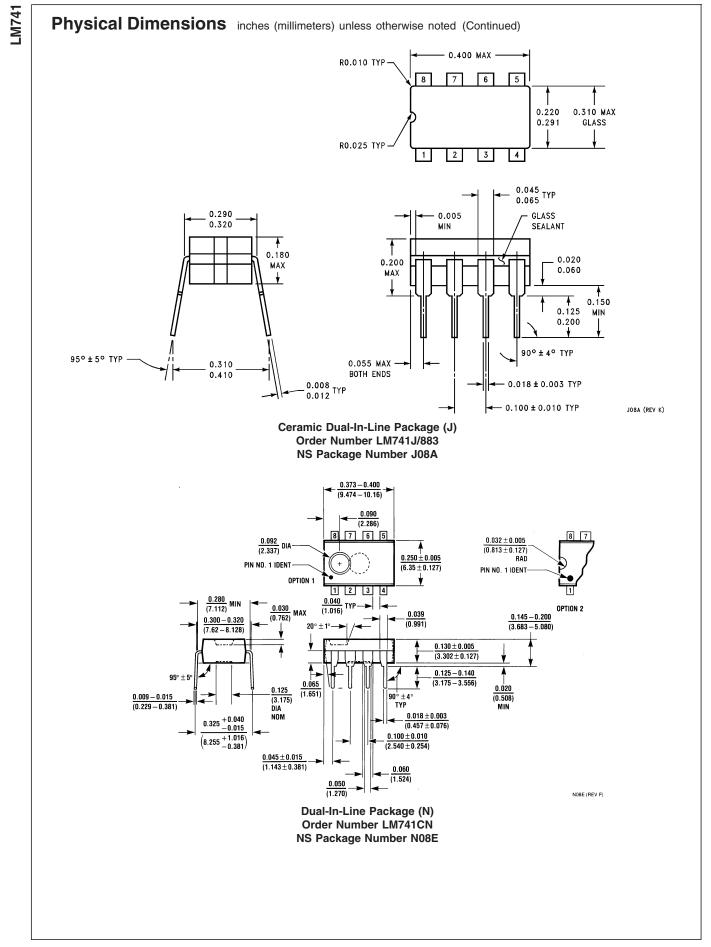
Note 4: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

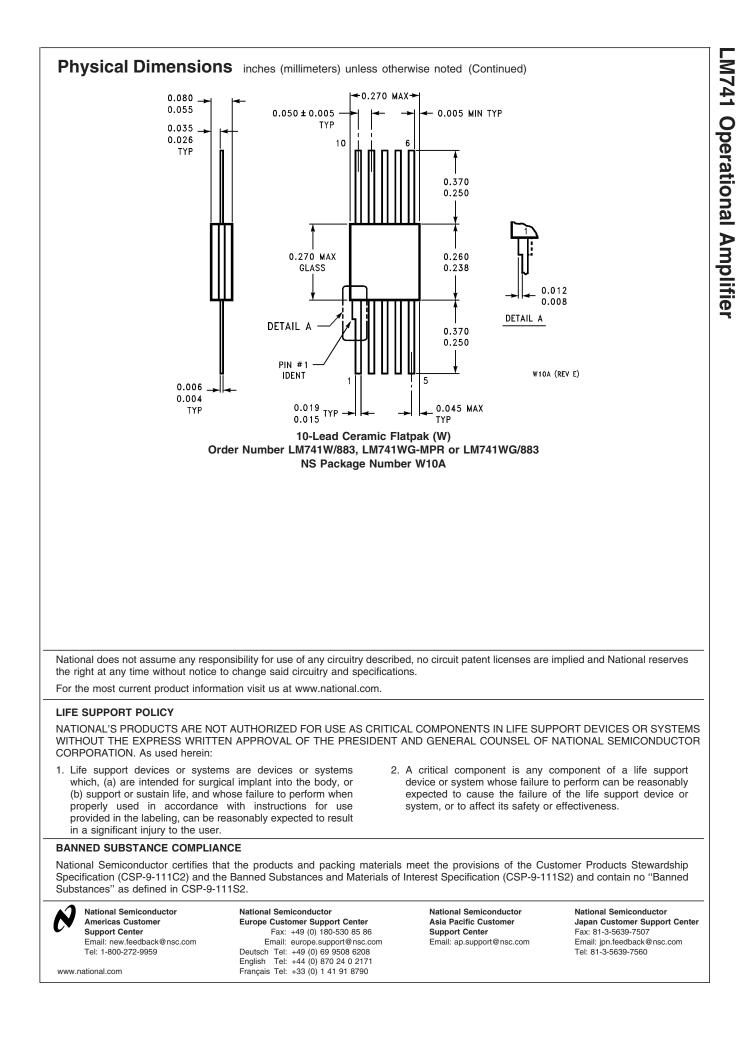

Note 5: Unless otherwise specified, these specifications apply for $V_S = \pm 15V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ}C \le T_A \le +70^{\circ}C$.

Note 6: Calculated value from: BW (MHz) = 0.35/Rise Time(μ s).


Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.


Note 8: Human body model, 1.5 k Ω in series with 100 pF.


Schematic Diagram



Physical Dimensions inches (millimeters) unless otherwise noted

